Next Generation DSP Based Electric Drives Lab

Undergraduate Education

System Setup

Developed Experiments

- 1. Introduction to DSP Electric Drives
- 2. RTI of DC Switch Mode Converter
- 3. No Load DC Motor Test
- 4. Characterization of DC Motor
- 5. DC Motor Speed Control
- 6. Four Quadrant Operation of DC Motor
- 7. Characterization of Induction Motor
- 8. V/f Speed Control of Induction Motor
- 9. PMAC Motor Vector Control

DC Motor

Induction Motor

control of active load (torque/speed controlled), slip frequency injection and voltage boost capability in the characterization of induction

motor

PMAC Motor

Simulink model of vector control

Graduate Lab (Under Development)

Dual Fed Induction Generator

Additional Experiments (in dev.):

- d-q transforms and control
- DFIG Characterization
- Motoring and Generator
- Pos. and Neg. Reactive Power

3 Inverter Board

Initial working prototype complete, rework in 2012

Reference Material

Lab Manual: Available online at

http://www.ece.umn.edu/groups/power/labs/ed_lab_man.pdf Vendor Info and Budget: Available online at

http://www.ece.umn.edu/groups/power/labs/labs.html

Vendor information and laboratory budget:

MOTORSOLVER LLC (<u>www.motorsolver.com</u>), for motors
HiRel Systems LLC (LoisK@HiRelSystems.com</u>), for drives board
dSPACE (<u>vmoudgal@dspaceinc.com</u>), for DSP system
Budget : \$10,000 for one complete setup

